3.138 \(\int (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=142 \[ \frac {2 a^{5/2} A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^3 (35 A+32 B) \tan (c+d x)}{15 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a^2 (5 A+8 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{15 d}+\frac {2 a B \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d} \]

[Out]

2*a^(5/2)*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2/5*a*B*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/d+2/
15*a^3*(35*A+32*B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/15*a^2*(5*A+8*B)*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3917, 3915, 3774, 203, 3792} \[ \frac {2 a^3 (35 A+32 B) \tan (c+d x)}{15 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a^2 (5 A+8 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{15 d}+\frac {2 a^{5/2} A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a B \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

(2*a^(5/2)*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^3*(35*A + 32*B)*Tan[c + d*x])/(
15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a^2*(5*A + 8*B)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(15*d) + (2*a*B*(a
+ a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*d)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3792

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*Cot[e + f*x])/
(f*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3915

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, In
t[Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3917

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[(b*
d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c*m
 + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && Gt
Q[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx &=\frac {2 a B (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {2}{5} \int (a+a \sec (c+d x))^{3/2} \left (\frac {5 a A}{2}+\frac {1}{2} a (5 A+8 B) \sec (c+d x)\right ) \, dx\\ &=\frac {2 a^2 (5 A+8 B) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 a B (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {4}{15} \int \sqrt {a+a \sec (c+d x)} \left (\frac {15 a^2 A}{4}+\frac {1}{4} a^2 (35 A+32 B) \sec (c+d x)\right ) \, dx\\ &=\frac {2 a^2 (5 A+8 B) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 a B (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\left (a^2 A\right ) \int \sqrt {a+a \sec (c+d x)} \, dx+\frac {1}{15} \left (a^2 (35 A+32 B)\right ) \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {2 a^3 (35 A+32 B) \tan (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (5 A+8 B) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 a B (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}-\frac {\left (2 a^3 A\right ) \operatorname {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {2 a^{5/2} A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a^3 (35 A+32 B) \tan (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (5 A+8 B) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 a B (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.94, size = 128, normalized size = 0.90 \[ \frac {a^2 \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \sqrt {a (\sec (c+d x)+1)} \left (2 \sin \left (\frac {1}{2} (c+d x)\right ) (2 (5 A+14 B) \cos (c+d x)+(40 A+43 B) \cos (2 (c+d x))+40 A+49 B)+30 \sqrt {2} A \sin ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {5}{2}}(c+d x)\right )}{30 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

(a^2*Sec[(c + d*x)/2]*Sec[c + d*x]^2*Sqrt[a*(1 + Sec[c + d*x])]*(30*Sqrt[2]*A*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]
*Cos[c + d*x]^(5/2) + 2*(40*A + 49*B + 2*(5*A + 14*B)*Cos[c + d*x] + (40*A + 43*B)*Cos[2*(c + d*x)])*Sin[(c +
d*x)/2]))/(30*d)

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 378, normalized size = 2.66 \[ \left [\frac {15 \, {\left (A a^{2} \cos \left (d x + c\right )^{3} + A a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left ({\left (40 \, A + 43 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (5 \, A + 14 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, -\frac {2 \, {\left (15 \, {\left (A a^{2} \cos \left (d x + c\right )^{3} + A a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left ({\left (40 \, A + 43 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (5 \, A + 14 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{15 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/15*(15*(A*a^2*cos(d*x + c)^3 + A*a^2*cos(d*x + c)^2)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*((40*A
 + 43*B)*a^2*cos(d*x + c)^2 + (5*A + 14*B)*a^2*cos(d*x + c) + 3*B*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))
*sin(d*x + c))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2), -2/15*(15*(A*a^2*cos(d*x + c)^3 + A*a^2*cos(d*x + c)^2)*
sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - ((40*A + 43*B)*a
^2*cos(d*x + c)^2 + (5*A + 14*B)*a^2*cos(d*x + c) + 3*B*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x +
 c))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)]

________________________________________________________________________________________

giac [B]  time = 1.96, size = 309, normalized size = 2.18 \[ -\frac {\frac {15 \, A \sqrt {-a} a^{3} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{{\left | a \right |}} - \frac {2 \, {\left (45 \, \sqrt {2} A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 60 \, \sqrt {2} B a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - {\left (80 \, \sqrt {2} A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 80 \, \sqrt {2} B a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - {\left (35 \, \sqrt {2} A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 32 \, \sqrt {2} B a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}}{15 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

-1/15*(15*A*sqrt(-a)*a^3*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4
*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(
2)*abs(a) - 6*a))*sgn(cos(d*x + c))/abs(a) - 2*(45*sqrt(2)*A*a^5*sgn(cos(d*x + c)) + 60*sqrt(2)*B*a^5*sgn(cos(
d*x + c)) - (80*sqrt(2)*A*a^5*sgn(cos(d*x + c)) + 80*sqrt(2)*B*a^5*sgn(cos(d*x + c)) - (35*sqrt(2)*A*a^5*sgn(c
os(d*x + c)) + 32*sqrt(2)*B*a^5*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x
 + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/d

________________________________________________________________________________________

maple [B]  time = 1.44, size = 341, normalized size = 2.40 \[ -\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (15 A \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right )+30 A \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {2}\, \cos \left (d x +c \right )+15 A \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )+320 A \left (\cos ^{3}\left (d x +c \right )\right )+344 B \left (\cos ^{3}\left (d x +c \right )\right )-280 A \left (\cos ^{2}\left (d x +c \right )\right )-232 B \left (\cos ^{2}\left (d x +c \right )\right )-40 A \cos \left (d x +c \right )-88 B \cos \left (d x +c \right )-24 B \right ) a^{2}}{60 d \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x)

[Out]

-1/60/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(15*A*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*
(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*2^(1/2)*cos(d*x+c)^2+30*A*sin(d*x+c)*(-2*c
os(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2)
)*2^(1/2)*cos(d*x+c)+15*A*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*sin(d*x+c)+320*A*cos(d*x+c)^3+344*B*cos(d*x+c)^3-280*A*cos(d*x+c)^2-2
32*B*cos(d*x+c)^2-40*A*cos(d*x+c)-88*B*cos(d*x+c)-24*B)/sin(d*x+c)/cos(d*x+c)^2*a^2

________________________________________________________________________________________

maxima [B]  time = 1.01, size = 1396, normalized size = 9.83 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/6*(30*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*a^(5/2)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/
4)*((12*a^2*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - 3*a^2*sin(2*d*x + 2*c) - 4
*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (12*a^2*sin(2*d*x + 2*c)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c))) + 3*a^2*cos(2*d*x + 2*c) - a^2 + 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c))))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*((a^2*cos(2*d*x + 2*c)^
2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(c
os(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
 sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x +
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2
*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d
*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2
*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/
4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2
*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*A/((cos(
2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}} \left (A + B \sec {\left (c + d x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c)),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(5/2)*(A + B*sec(c + d*x)), x)

________________________________________________________________________________________